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SERIES  

INFINITE SERIES:   An Infinite Series of real numbers is the sum of an 

infinite sequence of real numbers. 

 If {an} is an infinite sequence of real numbers, then the expression 

a1 + a2 + a3 + …………….. + an+ …………………………… is called an Infinite 

series denoted by  𝑎𝑛
∞
𝑛=1 . 

an is called the nth term of the Infinite Series. 

Ex1: 

         {an} = 
1

𝑛
  =  1, 

1

2
 , 

1

3
 , 

1

4
 , ………………………is an infinite sequence. then 

         
1

𝑛
∞
𝑛=1   =  1 +   

1

2
+  

1

3
 +  

 1

4
  +  ……………………is an infinite Series 

formed by the above infinite sequence. 

Ex2: 

        {an} = ( −1 ) 𝑛+1 =  1,  -1,  1,  -1,  1,  -1,…….is an infinite sequence 

and  ( −1 )𝑛+1∞
𝑛=1    =  1  + (-1) + 1 + (-1) + ……….. is an infinite series 

formed by the above infinite sequence. 

Convergence and Divergence of a Series: 

        If the sum of an infinite series is a finite value L, then we say that 

the series converges to L. if the sum of an infinite series is not a finite 

value, then we say that the series diverges. 

        
1

𝑛2
∞
𝑛=1  =  1  +  

1

22  +  
1

32  +  
1

42 + …………. Is an infinite series. 
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S1 = 1 

S2 = 1  +  
1

22 

S3 = 1  +  
1

22  +  
1

32 

………………………………… 

Sn = 1  +  
𝟏

𝟐𝟐  +  
𝟏

𝟑𝟐  +  
𝟏

𝟒𝟐 + ………….
𝟏

𝒏𝟐  is  called the nth partial sum of the 

Series. 

Methods to Check the Convergence of Series: 

The Series  𝑎𝑛
∞
𝑛=1  converges if the Sequence of nth partial sums { sn } 

Converges. 

Ex:  

       ln (
𝑛

𝑛+1
 )∞

𝑛=1  is an infinite series. 

nth partial sum Sn =  ln (
𝑘

𝑘+1
 )𝑛

𝑘=1  

                                  =  [ln 𝑘 − ln  𝑘 + 1  ]𝑛
𝑘=1  

                                  = (ln1 – ln2) + (ln2 – ln3) + ……......(lnn – ln(n+1)) 

                                  = ln1 – ln(n+1) 

                           Sn   = - ln(n+1) 

 𝐥𝐢𝐦
𝒏→∞

 Sn = 𝐥𝐢𝐦
𝒏→∞

 -ln(n+1)  =  - ∞ 

Thus, the sequence of nth partial sums of the series diverges. Therefore 

the given series   ln (
𝑛

𝑛+1
 )∞

𝑛=1  diverges. 

Geometric Series test: 
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If the given series is in the form 

  𝑎𝑟𝑛−1∞
𝑛=1  = a + ar + a𝑟2 + ……….+ a𝑟𝑛−1+………. 

In which a and r are the fixed real numbers and a ≠ 0. Then the series is 

called a “ Geometric Series ”. 

The Geometric Series  𝑎𝑟𝑛−1∞
𝑛=1  or  𝑎𝑟𝑛∞

𝑛=0  

1. Converges to 
𝑎

1−𝑟
  if |r| < 1. 

2. Diverges if |r| ≥ 1. 

nth Term test: 

 𝑎𝑛
∞
𝑛=1  diverges if  𝐥𝐢𝐦

𝒏→∞
 an ≠ 0  or fails to exists.  

Note: if  𝐥𝐢𝐦
𝒏→∞

 an =  0  , then we cannot say that the series converges. 

1. If  𝑎𝑛  = A and  𝑏𝑛  = B are convergent Series, then  ( 𝑎𝑛 + 𝑏𝑛) 

= A + B and  ( 𝑎𝑛 − 𝑏𝑛) = A - B and  𝑘 𝑎𝑛  = kA. 

That means, the Sum and Difference of two convergent series are 

also convergent and non zero constant multiple of a convergent 

series is also convergent. 

2. Every non – zero constant multiple of a divergent series is 

divergent. 

3. If one of the series  𝑎𝑛  and  𝑏𝑛  coneverges and the other 

diverges then  ( 𝑎𝑛 + 𝑏𝑛) and  ( 𝑎𝑛 − 𝑏𝑛) diverge. 

4. If  𝑎𝑛  and  𝑏𝑛both divergent series, then  ( 𝑎𝑛 + 𝑏𝑛) and 

 ( 𝑎𝑛 − 𝑏𝑛) can converge. 

Ex:  𝑎𝑛  = 1 + 1 + 1 + 1 + …………………………… diverges to ∞ 

       𝑏𝑛  =  -1 + -1 + -1  + -1 + …………………….. divereges to -∞ 

      ( 𝑎𝑛 + 𝑏𝑛) = (1 -1) + (1-1) + (1-1) + ……...  
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                           = 0 + 0 + 0 + 0 + ……………………… converges to 0. 

Here,  𝑎𝑛  and  𝑏𝑛  both divergent series but  ( 𝑎𝑛 + 𝑏𝑛) 

convergent series. 

Note: Addition or deletion of a finite number of terms from a series 

will not alter its convergence or divergence. 

Integral Test: 

 Let { an } be a sequence of positive terms. Suppose an = f(n), where f is 

continuous, positive valued decreasing function of x for x ≥  N, where N 

is a natural number. 

Then the series  𝑎𝑛
∞
𝑛=1  and  𝑓 𝑥  𝑑𝑥

∞

𝑁
 both converge or both 

diverge. 

P – Series test: 

𝑇ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠  
1

𝑛𝑝
∞
𝑛=1  =  1  +  

1

2𝑝   +  
1

3𝑝   +  
1

4𝑝  + …………. Where P is a real 

constant, converges if P > 1 and diverges if P ≤ 1. 

Ex:  
1

𝑛
 ,  

1

 𝑛
 are divergent series. 

       
1

𝑛2 ,  
1

𝑛3 ,  
1

𝑛4 , …… are convergent series. 

Logarithmic  P – Series test: 

The series  
1

𝑛(ln 𝑛  )𝑝
∞
𝑛=2  = 

1

2(ln 2 )𝑝
 +  

1

3(ln 3 )𝑝
 + 

1

4(ln 4 )𝑝
 + ………… where p is 

a real constant, converges if p > 1 and diverges if p ≤ 1. 

Comparison  test: 
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 Let  𝑎𝑛  be a series with non – negative terms. 

1.  𝑎𝑛  converges if and only if there is a convergent series  𝑐𝑛  

with an ≤ cn for all n ≥ N , for some natural number N. 
2.  𝑎𝑛  diverges if there is a divergent series  𝑑𝑛  with an ≥ dn for all 

n ≥ N , for some natural number N. 

The Limit comparison  Test: 

 𝑎𝑛and  𝑏𝑛  be series and an > 0, bn > 0, for all n ≥ N , for some natural 

number N. 

1. If  𝐥𝐢𝐦
𝒏→∞

 
𝒂𝒏

𝒃𝒏
  = c > 0 then  𝑎𝑛and  𝑏𝑛  both converge or both 

diverge. 
2. If  𝐥𝐢𝐦

𝒏→∞
 
𝒂𝒏

𝒃𝒏
  =  0  and  𝑏𝑛  converges, then  𝑎𝑛  converges. 

3. If  𝐥𝐢𝐦
𝒏→∞

 
𝒂𝒏

𝒃𝒏
  =  ∞  and  𝑏𝑛  diverges, then  𝑎𝑛  diverges. 

Note:  

Choose  𝒃𝒏 as a geometric series like  
𝟏

𝟐𝒏 ,  
𝟏

𝟑𝒏 ,  
𝟏

𝟒𝒏 , ……………. Or     

P – series like  
𝟏

𝒏
  ,  

𝟏

𝒏𝟐 ,  
𝟏

𝒏𝟑 ,  
𝟏

𝒏𝟒 , …….etc. for the limit comparison 

test. ( numerator of  𝒃𝒏should be 1 ) 

The Ratio Test:  

𝐿𝑒𝑡  𝑎𝑛  be a series with positive terms and suppose that  𝐥𝐢𝐦
𝒏→∞

 
𝒂𝒏+𝟏

𝒂𝒏
 = 𝑙. 

then  

1. The series converges if 𝑙 < 1. 
2. The series diverges if 𝑙 > 1 or 𝑙 is infinite. 
3. The test is inconclusive if 𝑙 = 1. 
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Note: 

The Ratio test is effective when the terms of a series contain factorial  

expressions involving n or expressions raised to a power of n.For 

example  
𝟐𝒏

𝒏!
 ,  

𝟐𝒏+ 𝟓

𝟑𝒏  ,  
𝟒𝒏 (𝒏!)𝟐

(𝟐𝒏!)
 etc. 

The Root Test:  

𝐿𝑒𝑡  𝑎𝑛  be a series with an ≥ 0 for n ≥ M, for some natural number M 

and suppose that   𝐥𝐢𝐦
𝒏→∞

  𝒂𝒏
𝒏  = 𝑙. then  

1. The series converges if 𝑙 < 1. 
2. The series diverges if 𝑙 > 1 or 𝑙 is infinite. 
3. The test is inconclusive if 𝑙 = 1. 

Alternating Series: 

A series in which the terms are alternately positive and negative is 

called an “ Alternating Series ”. 

Ex:  
(−1)𝑛+1

𝑛
 ,  

(−1)𝑛  4

2𝑛
 , etc. 

The Alternating Series Test: ( Leibniz’s Theorem ) 

The alternating series  (−1)𝑛+1 𝑎𝑛  = a1 – a2 + a3 – a4 + ….…converges if   

1. 𝑎𝑛   > 0 for all n ∈ N 
2. 𝑎𝑛  ≥ 𝑎𝑛+1 for all n ∈ N 
3.  𝐥𝐢𝐦

𝒏→∞
 𝑎𝑛  = 0.  

Ex:  The alternating harmonic series  
(−1)𝑛+1  

𝑛
   convergent. 
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Absolute Convergence: 

A series  𝑎𝑛  converges Absolutely if the corresponding series of 

absolute values,  |𝑎𝑛  | converges.  

Note: Every absolutely convergent series is convergent. Means if 

 |𝒂𝒏 | converges then  𝒂𝒏 𝒂𝒍𝒔𝒐 converges. 

Conditional Convergence: 

A series converges conditionally if it converges but does not converges 

absolutely. that means  𝑎𝑛  converges but  |𝑎𝑛  | diverges. 

Ex:  The alternating harmonic series  
(−1)𝑛+1  

𝑛
   converges conditionally. 

 𝒂𝒏   |𝒂𝒏 | Then the series is 

 𝒂𝒏 convergent  |𝒂𝒏 | convergent Absolutely Convergent 
 𝒂𝒏 convergent  |𝒂𝒏 |divergent Conditionally Convergent 
 𝒂𝒏 divergent  |𝒂𝒏 | divergent  

 

Note:  

1. If  |𝒂𝒏 | converges then  𝒂𝒏 converges. 

2. If  𝒂𝒏 diverges then  |𝒂𝒏 | diverges.  

The alternating P – Series Test: 

The alternating p – series  
(−1)𝑛+1 

𝑛𝑝  = 1 - 
1

2𝑝  + 
1

3𝑝  - 
1

4𝑝  + …………. 

1. Converges if p > 0 
2. Converges absolutely if p > 1 
3. Converges conditionally if 0 < p ≤ 1. 
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The Ratio Test:  

𝐿𝑒𝑡  𝑎𝑛  be a series of real numbers with an ≠ 0 , for all n  and suppose 

that  𝐥𝐢𝐦
𝒏→∞

 |
𝒂𝒏+𝟏

𝒂𝒏
| = 𝑙. then  

1. The series converges absolutely if 𝑙 < 1. 
2. The series diverges if 𝑙 > 1 or 𝑙 is infinite. 
3. The test is inconclusive if 𝑙 = 1. 

The Root Test:  

𝐿𝑒𝑡  𝑎𝑛  be a series of real numbers and suppose that   𝐥𝐢𝐦
𝒏→∞

  |𝒂𝒏|𝒏  = 𝑙. 

then  

1. The series converges absolutely if 𝑙 < 1. 
2. The series diverges if 𝑙 > 1 or 𝑙 is infinite. 
3. The test is inconclusive if 𝑙 = 1. 

The Power Series: 

Let a be given real number and x be a real variable. A power series in 

𝑥 − 𝑎 or a power series centered at a or a power series about a is a 

series of the form  

 𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  = 𝑎0 + 𝑎1(𝑥 − 𝑎) + 𝑎2 (𝑥 − 𝑎)2 + ……𝑎𝑛  (𝑥 − 𝑎)𝑛+….. 

Where an’s are constants called coefficients of the series. 

Note: 

1. The power series  𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  may converges at exactly at x 

= a. 
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2.  The power series  𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  may converges in some 

interval with radius R where 𝑎 is the centre of that interval. 

3. The power series  𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  may converges for the values 

of x at everywhere on the real line. 

Radius of Convergence: 

1. If a power series  𝒂𝒏(𝒙 − 𝒂)𝒏∞
𝒏=𝟎  converges in some interval 

(p,q) where ‘𝒂 ’ is the centre, then the radius of the convergence 

is the half of the distance from p to q on the real line. 

2. If a power series  𝒂𝒏(𝒙 − 𝒂)𝒏∞
𝒏=𝟎  converges  exactly at 𝒂 , then 

the radius of convergence is zero. 
3. If a power series  𝒂𝒏(𝒙 − 𝒂)𝒏∞

𝒏=𝟎  converges for the values of x 

at everywhere on the real line, then the radius of the 

convergence is ∞. 

Term by Term Differentiation: 

The power series  𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  converges to Some function 𝑓 𝑥  in 

some interval 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅, we can write it as 

                  𝑓 𝑥   =    𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0          where 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

By the term by term Differentiation theorem,  

          𝑓 𝑥   =    𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0          where 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

       𝑓| (𝑥)  =    𝑛𝑎𝑛(𝑥 − 𝑎)𝑛−1∞
𝑛=0          where 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

 𝑓|| (𝑥)  =    𝑛(𝑛 − 1)𝑎𝑛(𝑥 − 𝑎)𝑛−2∞
𝑛=0          where 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

And so on. It means that the derivatives of the power series 

 𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0 are  𝑛𝑎𝑛(𝑥 − 𝑎)𝑛−1∞

𝑛=0 , 𝑛(𝑛 − 1)𝑎𝑛(𝑥 − 𝑎)𝑛−2∞
𝑛=0   
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……… are also convergent series and converge to  𝑓| (𝑥)  ,  𝑓|| (𝑥), ……… 

respectively in the same interval 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅. 

Term by Term Integration: 

The power series  𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  converges to Some function 𝑓 𝑥  in 

some interval 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅, we can write it as 

                  𝑓 𝑥   =    𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0          where 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

By the term by term Integration theorem,  

          𝑓 𝑥   =    𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0          where 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

        𝑓(𝑥) 𝑑𝑥 =    𝑎𝑛
∞
𝑛=0  

(𝑥−𝑎)𝑛+1

𝑛+1
  + C      where 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

 ( 𝑓(𝑥) 𝑑𝑥) 𝑑𝑥 =  𝑎𝑛
∞
𝑛=0  

1

𝑛+1
 
(𝑥−𝑎)𝑛+2

𝑛+2
  + C where 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

And so on. It means that the integrals of the power series  

  𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0 are   𝑎𝑛

∞
𝑛=0  

(𝑥−𝑎)𝑛+1

𝑛+1
  + C  ,  𝑎𝑛

∞
𝑛=0  

1

𝑛+1
 
(𝑥−𝑎)𝑛+2

𝑛+2
  + C 

………are also convergent series and converge to   𝑓(𝑥) 𝑑𝑥 , 

 ( 𝑓(𝑥) 𝑑𝑥) 𝑑𝑥  ……… respectively in the same interval 𝑎 − 𝑅 < 𝑥 <

𝑎 + 𝑅. 

Taylor Series: 

Let 𝑓 be a function with derivatives of all orders throughout some 

interval containing 𝑎 as an interior point. Then the Taylor Series 

generated by 𝑓 at 𝑥 = 𝑎 is 

 
𝑓𝑘(𝑎)

𝑘 !
∞
𝑘=0  (𝑥 − 𝑎)𝑘  = 𝑓(𝑎) + 𝑓| 𝑎 (𝑥 − 𝑎) + 

 𝑓|| 𝑎 

2!
 (𝑥 − 𝑎)2 + ………..  .   

……………………..
 𝑓𝑛  𝑎 

𝑛 !
 (𝑥 − 𝑎)𝑛  + …………….. 
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By Using the Taylor series formula, we can find a power series to a 

given function 𝑓(𝑥) by at given real number 𝑎. 

Maclaurin Series: 

If we take the real number 𝑎 = 0 in the above Taylor Series, then the 

taylor series becomes as 

 
𝑓𝑘(0)

𝑘 !

∞
𝑘=0  (𝑥)𝑘  = 𝑓(𝑎) + 𝑓| 0 (𝑥) + 

 𝑓|| 0 

2!
 (𝑥)2 + …….

 𝑓𝑛  0 

𝑛 !
 (𝑥)𝑛  + ……… 

It is called a “ Maclaurin Series”. 

Taylor Polynomial: 

From the Taylor Series Formula, 

 
𝑓𝑘(𝑎)

𝑘 !

∞
𝑘=0  (𝑥 − 𝑎)𝑘  = 𝑓(𝑎) + 𝑓| 𝑎 (𝑥 − 𝑎) + 

 𝑓|| 𝑎 

2!
 (𝑥 − 𝑎)2 + ………..  .   

……………………..
 𝑓𝑛  𝑎 

𝑛 !
 (𝑥 − 𝑎)𝑛  + …………….. 

We can write the Taylor Polynomials as 

Polynomial of Order 1 is 𝑃1 = 𝑓(𝑎) + 𝑓| 𝑎 (𝑥 − 𝑎) 

Polynomial of Order 2 is 𝑃2 = 𝑓(𝑎) + 𝑓| 𝑎 (𝑥 − 𝑎) + 
 𝑓|| 𝑎 

2!
 (𝑥 − 𝑎)2 

Polynomial of Order 3 is 𝑃3 = 𝑓(𝑎) + 𝑓| 𝑎 (𝑥 − 𝑎) + 
 𝑓|| 𝑎 

2!
 (𝑥 − 𝑎)2 +  

 𝑓||| 𝑎 

3!
 (𝑥 − 𝑎)3  

General form of Taylor polynomial of Order n  is 

𝑷𝒏 = 𝒇(𝒂) + 𝒇| 𝒂 (𝒙 − 𝒂) + 
 𝒇|| 𝒂 

𝟐!
 (𝒙 − 𝒂)𝟐 + …………… 

 𝒇𝒏 𝒂 

𝒏!
 (𝒙 − 𝒂)𝒏 . 
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Note: 

We can use these Taylor polynomials to get approximate value of the 

function 𝒇 𝒙  𝒂𝒕 𝒈𝒊𝒗𝒆𝒏 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒂. 

Taylor Formula: 

By mentioned in the above note, we can estimate the value of function 

𝑓 𝑥  at given real number 𝑎 by using the Taylor Polynomials. But the 

polynomials will not give the exact value of the function and some error 

𝑅𝑛  exists.  

Suppose, if we are estimating the function 𝑓 𝑥  value at 𝑎 by using the 

Taylor Polynomial of order 1 that is 𝑃1  , then there will be some error 

𝑅1. We can write it as 

𝑓 𝑥 =  𝑃1 + 𝑅1 

Suppose, if we are estimating the function 𝑓 𝑥  value at 𝑎 by using the 

Taylor Polynomial of order 2 that is 𝑃2  , then there will be some error 

𝑅2. We can write it as 

𝑓 𝑥 =  𝑃2 + 𝑅2 

In the same way, we can write the general formula as 

𝒇 𝒙 =  𝑷𝒏 +  𝑹𝒏 

Where 𝑃𝑛  is the Taylor Polynomial of Order n and 𝑅𝑛  is the estimating 

error. The above formula is called the “ Taylor Formula ” .  
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In the Taylor Formula,  

𝑓 𝑥 =  𝑃𝑛 + 𝑅𝑛  

If n       ∞ then 𝑅𝑛        0  ( The estimating error will become Zero ) and 

𝑃𝑛  will become the Taylor Series formula. ( The Taylor Polynomial Order 

n will become the Taylor Series Formula as n       ∞ ). 

 

 

As long as we have memories, 

yesterday remains. 

As long as we have hope, 

tomorrow awaits. 

As long as we have friendship, 

each day is never a waste. 

 

 

Jaya Krishna Reddy. M. 


