SERIES

INFINITE SERIES: An Infinite Series of real numbers is the sum of an infinite sequence of real numbers.

If $\{a_n\}$ is an infinite sequence of real numbers, then the expression $a_1 + a_2 + a_3 + \dots + a_n + \dots$ is called an Infinite series denoted by $\sum_{n=1}^{\infty} a_n$.

 a_n is called the n^{th} term of the Infinite Series.

Ex1:

 $\{a_n\} = \frac{1}{n} = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ is an infinite sequence. then $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is an infinite Series formed by the above infinite sequence.

Ex2:

 $\{a_n\} = (-1)^{n+1} = 1, -1, 1, -1, 1, -1, \dots$ is an infinite sequence and $\sum_{n=1}^{\infty} (-1)^{n+1} = 1 + (-1) + 1 + (-1) + \dots$ is an infinite series formed by the above infinite sequence.

Convergence and Divergence of a Series:

If the sum of an infinite series is a finite value L, then we say that the series converges to L. if the sum of an infinite series is not a finite value, then we say that the series diverges.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \mathbf{1} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots \text{ Is an infinite series.}$$

$$S_{1} = 1$$

$$S_{2} = 1 + \frac{1}{2^{2}}$$

$$S_{3} = 1 + \frac{1}{2^{2}} + \frac{1}{3^{2}}$$
....
$$S_{n} = 1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots + \frac{1}{n^{2}}$$
 is called the *nth partial sum* of the Series.

Methods to Check the Convergence of Series:

The Series $\sum_{n=1}^{\infty} a_n$ converges if the Sequence of nth partial sums { s_n } Converges.

Ex:

 $\sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$ is an infinite series.

$$n^{th} \text{ partial sum } S_n = \sum_{k=1}^n \ln\left(\frac{k}{k+1}\right)$$

= $\sum_{k=1}^n [\ln k - \ln(k+1)]$
= $(\ln 1 - \ln 2) + (\ln 2 - \ln 3) + \dots (\ln n - \ln(n+1))$
= $\ln 1 - \ln(n+1)$
 $S_n = -\ln(n+1)$

 $\lim_{n\to\infty} S_n = \lim_{n\to\infty} -\ln(n+1) = -\infty$

Thus, the sequence of nth partial sums of the series diverges. Therefore the given series $\sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$ diverges.

Geometric Series test:

If the given series is in the form

 $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots + ar^{n-1} + \dots$

In which a and r are the fixed real numbers and a \neq 0. Then the series is called a "Geometric Series".

The Geometric Series $\sum_{n=1}^{\infty} ar^{n-1}$ or $\sum_{n=0}^{\infty} ar^n$

- 1. Converges to $\frac{a}{1-r}$ if $|\mathbf{r}| < 1$.
- 2. Diverges if $|r| \ge 1$.

nth Term test:

 $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n \to \infty} a_n \neq 0$ or fails to exists.

Note: if $\lim_{n\to\infty} a_n = 0$, then we cannot say that the series converges.

1. If $\sum a_n = A$ and $\sum b_n = B$ are convergent Series, then $\sum (a_n + b_n) = A + B$ and $\sum (a_n - b_n) = A - B$ and $\sum k a_n = kA$.

That means, the Sum and Difference of two convergent series are also convergent and non zero constant multiple of a convergent series is also convergent.

- 2. Every non zero constant multiple of a divergent series is divergent.
- 3. If one of the series $\sum a_n$ and $\sum b_n$ coneverges and the other diverges then $\sum (a_n + b_n)$ and $\sum (a_n b_n)$ diverge.
- 4. If $\sum a_n$ and $\sum b_n$ both divergent series, then $\sum (a_n + b_n)$ and $\sum (a_n b_n)$ can converge.
 - Ex: $\sum a_n = 1 + 1 + 1 + 1 + 1 + \dots$ diverges to ∞ $\sum b_n = -1 + -1 + -1 + -1 + \dots$ diverges to $-\infty$ $\sum (a_n + b_n) = (1 - 1) + (1 - 1) + (1 - 1) + \dots$

 $= 0 + 0 + 0 + 0 + \dots$ converges to 0.

Here, $\sum a_n$ and $\sum b_n$ both divergent series but $\sum (a_n + b_n)$ convergent series.

Note: Addition or deletion of a finite number of terms from a series will not alter its convergence or divergence.

Integral Test:

Let { a_n } be a sequence of positive terms. Suppose $a_n = f(n)$, where f is continuous, positive valued decreasing function of x for $x \ge N$, where N is a natural number.

Then the series $\sum_{n=1}^{\infty} a_n$ and $\int_N^{\infty} f(x) dx$ both converge or both diverge.

P – Series test:

The series $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots$ Where P is a real constant, converges if P > 1 and diverges if P ≤ 1.

Ex: $\sum \frac{1}{n}$, $\sum \frac{1}{\sqrt{n}}$ are divergent series.

 $\sum \frac{1}{n^2}$, $\sum \frac{1}{n^3}$, $\sum \frac{1}{n^4}$, are convergent series.

Logarithmic P – Series test:

The series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} = \frac{1}{2(\ln 2)^p} + \frac{1}{3(\ln 3)^p} + \frac{1}{4(\ln 4)^p} + \dots$ where p is a real constant, converges if p > 1 and diverges if p ≤ 1.

Comparison test:

Let $\sum a_n$ be a series with non – negative terms.

- 1. $\sum a_n$ converges if and only if there is a convergent series $\sum c_n$ with $a_n \le c_n$ for all $n \ge N$, for some natural number N.
- 2. $\sum a_n$ diverges if there is a divergent series $\sum d_n$ with $a_n \ge d_n$ for all $n \ge N$, for some natural number N.

The Limit comparison Test:

 $\sum a_n$ and $\sum b_n$ be series and $a_n > 0$, $b_n > 0$, for all $n \ge N$, for some natural number N.

- 1. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$ then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- 2. If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Note:

Choose $\sum b_n$ as a geometric series like $\sum \frac{1}{2^n}$, $\sum \frac{1}{3^n}$, $\sum \frac{1}{4^n}$, Or P - series like $\sum \frac{1}{n}$, $\sum \frac{1}{n^2}$, $\sum \frac{1}{n^3}$, $\sum \frac{1}{n^4}$,etc. for the limit comparison test. (numerator of $\sum b_n$ should be 1)

The Ratio Test:

Let $\sum a_n$ be a series with positive terms and suppose that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$. then

- - 1. The series converges if l < 1.
 - 2. The series diverges if l > 1 or l is infinite.
 - 3. The test is inconclusive if l = 1.

Note:

The Ratio test is effective when the terms of a series contain factorial expressions involving n or expressions raised to a power of n.For example $\sum \frac{2^n}{n!}$, $\sum \frac{2^{n+5}}{3^n}$, $\sum \frac{4^n (n!)^2}{(2n!)}$ etc.

The Root Test:

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge M$, for some natural number M and suppose that $\lim_{n \to \infty} \sqrt[n]{a_n} = l$. then

- 1. The series converges if l < 1.
- 2. The series diverges if l > 1 or l is infinite.
- 3. The test is inconclusive if l = 1.

Alternating Series:

A series in which the terms are alternately positive and negative is called an "Alternating Series".

Ex:
$$\sum \frac{(-1)^{n+1}}{n}$$
 , $\sum \frac{(-1)^n 4}{2^n}$, etc.

The Alternating Series Test: (Leibniz's Theorem)

The alternating series $\sum (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$ converges if

- 1. $a_n > 0$ for all $n \in N$
- 2. $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$
- 3. $\lim_{n \to \infty} a_n = 0.$

Ex: The alternating harmonic series $\sum \frac{(-1)^{n+1}}{n}$ convergent.

Absolute Convergence:

A series $\sum a_n$ converges Absolutely if the corresponding series of absolute values, $\sum |a_n|$ converges.

Note: Every absolutely convergent series is convergent. Means if $\sum |a_n|$ converges then $\sum a_n$ also converges.

Conditional Convergence:

A series converges conditionally if it converges but does not converges absolutely. that means $\sum a_n$ converges but $\sum |a_n|$ diverges.

Ex: The alternating harmonic series $\sum \frac{(-1)^{n+1}}{n}$ converges conditionally.

$\sum a_n$	$\sum a_n $	Then the series is
$\sum a_n$ convergent	$\sum a_n $ convergent	Absolutely Convergent
$\sum a_n$ convergent	$\sum a_n $ divergent	Conditionally Convergent
$\sum a_n$ divergent	$\sum a_n $ divergent	

Note:

- **1.** If $\sum |a_n|$ converges then $\sum a_n$ converges.
- 2. If $\sum a_n$ diverges then $\sum |a_n|$ diverges.

<u>The alternating P – Series Test:</u>

The alternating p - series $\sum \frac{(-1)^{n+1}}{n^p} = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots$

- 1. Converges if p > 0
- 2. Converges absolutely if p > 1
- 3. Converges conditionally if 0 .

The Ratio Test:

Let $\sum a_n$ be a series of real numbers with an $\neq 0$, for all n and suppose that $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = l$. then

- 1. The series converges absolutely if l < 1.
- 2. The series diverges if l > 1 or l is infinite.
- 3. The test is inconclusive if l = 1.

The Root Test:

Let $\sum a_n$ be a series of real numbers and suppose that $\lim_{n \to \infty} \sqrt[n]{|a_n|} = l$. then

- 1. The series converges absolutely if l < 1.
- 2. The series diverges if l > 1 or l is infinite.
- 3. The test is inconclusive if l = 1.

The Power Series:

Let a be given real number and x be a real variable. A power series in x - a or a power series centered at a or a power series about a is a series of the form

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots + a_n (x-a)^n + \dots$$

Where a_n 's are constants called coefficients of the series.

Note:

1. The power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ may converges at exactly at x = a.

- 2. The power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ may converges in some interval with radius R where *a* is the centre of that interval.
- 3. The power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ may converges for the values of x at everywhere on the real line.

Radius of Convergence:

- 1. If a power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ converges in some interval (p,q) where 'a' is the centre, then the radius of the convergence is the half of the distance from p to q on the real line.
- 2. If a power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ converges exactly at a, then the radius of convergence is zero.
- 3. If a power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ converges for the values of x at everywhere on the real line, then the radius of the convergence is ∞ .

Term by Term Differentiation:

The power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ converges to Some function f(x) in some interval a - R < x < a + R, we can write it as

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$$
 where $a - R < x < a + R$

By the term by term Differentiation theorem,

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$$
 where $a - R < x < a + R$

$$f^{|}(x) = \sum_{n=0}^{\infty} na_n (x-a)^{n-1}$$
 where $a - R < x < a + R$

 $f^{||}(x) = \sum_{n=0}^{\infty} n(n-1)a_n(x-a)^{n-2}$ where a - R < x < a + R

And so on. It means that the derivatives of the power series $\sum_{n=0}^{\infty} a_n (x-a)^n \operatorname{are} \sum_{n=0}^{\infty} n a_n (x-a)^{n-1}$, $\sum_{n=0}^{\infty} n (n-1) a_n (x-a)^{n-2}$

...... are also convergent series and converge to $f^{\parallel}(x)$, $f^{\parallel}(x)$, respectively in the same interval a - R < x < a + R.

Term by Term Integration:

The power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ converges to Some function f(x) in some interval a - R < x < a + R, we can write it as

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$$
 where $a - R < x < a + R$

By the term by term Integration theorem,

 $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n \text{ where } a - R < x < a + R$ $\int f(x) \, dx = \sum_{n=0}^{\infty} a_n \, \frac{(x-a)^{n+1}}{n+1} + C \text{ where } a - R < x < a + R$

 $\int (\int f(x) \, dx) \, dx = \sum_{n=0}^{\infty} a_n \, \frac{1}{n+1} \frac{(x-a)^{n+2}}{n+2} + \mathsf{C} \text{ where } a - R < x < a + R$

And so on. It means that the integrals of the power series $\sum_{n=0}^{\infty} a_n (x-a)^n \operatorname{are} \sum_{n=0}^{\infty} a_n \frac{(x-a)^{n+1}}{n+1} + C$, $\sum_{n=0}^{\infty} a_n \frac{1}{n+1} \frac{(x-a)^{n+2}}{n+2} + C$are also convergent series and converge to $\int f(x) \, dx$, $\int (\int f(x) \, dx) \, dx$ respectively in the same interval a - R < x < a + R.

Taylor Series:

Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the Taylor Series generated by f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{k}(a)}{k!} (x-a)^{k} = f(a) + f^{\dagger}(a)(x-a) + \frac{f^{\dagger}(a)}{2!} (x-a)^{2} + \dots \dots$$

By Using the Taylor series formula, we can find a power series to a given function f(x) by at given real number a.

Maclaurin Series:

If we take the real number a = 0 in the above Taylor Series, then the taylor series becomes as

 $\sum_{k=0}^{\infty} \frac{f^k(0)}{k!} (x)^k = f(a) + f^{\dagger}(0)(x) + \frac{f^{\dagger}(0)}{2!} (x)^2 + \dots \frac{f^n(0)}{n!} (x)^n + \dots$ It is called a "Maclaurin Series".

Taylor Polynomial:

From the Taylor Series Formula,

$$\sum_{k=0}^{\infty} \frac{f^{k}(a)}{k!} (x-a)^{k} = f(a) + f^{\dagger}(a)(x-a) + \frac{f^{\dagger}(a)}{2!} (x-a)^{2} + \dots \dots$$

We can write the Taylor Polynomials as

Polynomial of Order 1 is $P_1 = f(a) + f^{\dagger}(a)(x - a)$

Polynomial of Order 2 is $P_2 = f(a) + f^{\parallel}(a)(x - a) + \frac{f^{\parallel}(a)}{2!}(x - a)^2$

Polynomial of Order 3 is $P_3 = f(a) + f^{\parallel}(a)(x - a) + \frac{f^{\parallel}(a)}{2!}(x - a)^2 + \frac{f^{\parallel}(a)}{2!}(x - a)^2$

$$\frac{f^{|||}(a)}{3!}(x-a)^3$$

General form of Taylor polynomial of Order n is

$$P_n = f(a) + f^{||}(a)(x-a) + \frac{f^{||}(a)}{2!}(x-a)^2 + \dots + \frac{f^{n}(a)}{n!}(x-a)^n.$$

Note:

We can use these Taylor polynomials to get approximate value of the function f(x) at given real number a.

Taylor Formula:

By mentioned in the above note, we can estimate the value of function f(x) at given real number a by using the Taylor Polynomials. But the polynomials will not give the exact value of the function and some error R_n exists.

Suppose, if we are estimating the function f(x) value at a by using the Taylor Polynomial of order 1 that is P_1 , then there will be some error R_1 . We can write it as

$$f(x) = P_1 + R_1$$

Suppose, if we are estimating the function f(x) value at a by using the Taylor Polynomial of order 2 that is P_2 , then there will be some error R_2 . We can write it as

$$f(x) = P_2 + R_2$$

In the same way, we can write the general formula as

$$f(x) = P_n + R_n$$

Where P_n is the Taylor Polynomial of Order n and R_n is the estimating error. The above formula is called the "**Taylor Formula**".

In the Taylor Formula,

$$f(x) = P_n + R_n$$

If $n \rightarrow \infty$ then $R_n \rightarrow 0$ (The estimating error will become Zero) and

 P_n will become the Taylor Series formula. (The Taylor Polynomial Order n will become the Taylor Series Formula as n $\rightarrow \infty$).

As long as we have memories, yesterday remains. As long as we have hope. tomorrow awaits. As long as we have friendship. each day is never a waste.

Jaya Krishna Reddy. M.